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On the basis of the phenomenological  t h e o r y - t h e  thermodynamics of irreversible processes -and  of the 
independent results of kinetic and stat ist ical  theory, a systematic description is given of transfer phenomena: 
heat  conduction allowing for finite rate of propagation of heat, stress relaxation in viscoelastic media,  
moisture transfer in capi l la :y-porous media,  and turbulent transfer processes. Some solutions are presented 
for the hyperbolic equation of mass transfer in porous media .  

The basic theory. The theory of transfer processes embraces such diverse phenomena as diffusion, heat conduction, 
thermal diffusion, e lec t r ica l  conduction, absorption of sound waves, etc.  

Transfer phenomena occur in systems which, strictly speaking, are not in a state of thermodynamic equil ibrium. 
Two types of transfer processes must be distinguished. 

Firstly, there are processes occurring in a system whose ini t ial  state is not an equilibrium one; left  to itself, the 
system undergoes transition to this equilibrium state. All  relaxation processes are examples of this type. 

Secondly, there are processes occurring in a system where external agents (e. g . ,  external ly maintained tempera-  
ture gradients or variable external  fields) prevent the establishment of the equilibrium state.  In this kind of system, 
exposed to external  influence, there is established, in general, a stationary state which should be distinguished from an 
equilibrium state. 

The study of both types of transfer processes is the task of transfer theory. 

The following three basic methods of investigating irreversible transfer processes may be mentioned.  

Firstly, there is the kinetic theory, the  most direct method of examining irreversible processes. Here some 
concrete model  of  the system is assumed ini t ia l ly .  The resulting probabil i t ies of the various molecular  collisions make 
it possible to write some kinetic equation, e . g . ,  the Boltzmann equation. 

Secondly, the stat is t ical  mechanics of  irreversible processes offers a very general method.  Its object ive is the 
development  of a general formalism, similar to the algorithm of the stat ist ical  sum in the s tat is t ical  mechanics of 
equilibrium states. This formalism must permit  the calculat ion from the ready-made  formulas of  any macroscopic 
characteris t ic  of  the system in which the irreversible process occurs. Here no special  model  of the system is assumed 
beforehand. This approach has fundamental difficulties [1]. 

Finally,  there is the principal  method of the present paper.  This is to examine transfer processes with the heip of 
the phenomenological  theory of the thermodynamics of irreversible processes, a theory which, however, is based on the 

first two methods. 

The thermodynamics of irreversible processes is a powerful phenomenological  method of  studying heat  and mass 
transfer phenomena.  It finds wide appl icat ion in the investigation of transfer of heat, mass and energy of macroscopic 
motion. As de Groot [2] has shown, the equations of hydrodynamics of continuous media  are obtained direct ly  from the 
basic equations of thermodynamics of nonequilibrium states. By developing these methods, we can obtain equations for 

the transfer of energy, heat  and mass for various systems, including non-Newtonian liquids and dispersed media,  and 
can also substantiate certain features of turbulent heat  and mass transfer theory. This paper will  also deal  with these 

questions. 

From the thermodynamics of irreversible processes is derived the known formula relat ing rate of production of  
entropy dis  to the fluxes (e. g . ,  heat  or diffusion flux, etc.  ) and to the thermodynamic forces Xi, causing these fluxes 

(temperature and concentration gradients, etc.): 

o _ c / d  _ JiX  > 0  (1)  

*This paper was presented at the Minsk All-Union Conference on Heat and Mass Transfer, 5 -9  May 1964. 
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In deriving (1), the Gibbs equation 

TdS = dU + pdV - -  2 ~i dtzi (2) 
i 

is used. Relations (1) and (2) assume that the entropy of a system not in the equilibrium state is determined by the same 
independent variables as that of one that is. Postulate (2), which affirms that it is possible to described nonequilibrium 
states by means of variables defined, strictly speaking, only for equilibrium systems, is not self-evident .  However, 
Prigogine has shown from kinetic theory that it is a very good approximation when the departure from equilibrium is not 
too great. 

For transfer processes, the thermodynamics of irreversible processes, based on (1), is l imi ted  to the region of 
validi ty of  the linear phenomenological  laws 

Ji = ~.~ Li~Xv' (3) 
k 

where the phenomenological  coefficients Lik are assumed to be constant. This lat ter  fact should be noted part icularly,  
and should be borne in mind when the essentially linear relations (3) nevertheless involve an empir ica l  dependence of 
the phenomenological  coefficients Lik on the variables entering into the definition of the thermodynamic forces. This 
is, strictly speaking, incorrect within the framework of the thermodynamics of  irreversible processes. 

Moreover, a reciprocity relation obtains, resulting from microscopic reversibility: 

Li~ = L~i. (4) 

Conditions (3) and (4) are more rigid than the conditions of appl icabi l i ty  of the Gibbs equation. As follows from 
(1), (3), and (4), it may be asserted that the coefficients are determined by a posi t ive-def ini te  quadratic form of the 

type ~.~ Lik X iX  k >/0 for all  Xi, specif ical ly  for Li~Lkk ~ L~k. 
ik 

In addition, equations (3) must be covariant, i . e . ,  al l  their terms must have the same tensor dimension. 

Usually relations (1)-(4)  are applied to a steady transfer process, but they may also be applied, as de Groot has 
shown, to unsteady phenomena of low intensity. 

For intense unsteady transfer processes the phen0menological  coefficients entering into (3) cannot be considered 
constant. The basic requirement of l inear i ty  of the phenomenological  transfer laws is therefore violated.  The linear 
transfer equations transform in this case to nonlinear equations. The basic relations (1) and (3) then require refinement.  

Following Prigogine [3], we shall divide the total  change of rate of  production of entropy do in t ime dr  into two 
parts: one part, dxO , is connected with the change of thermodynamic forces, and the other, djo, with the change of 
flux: 

dv=dx'J  + ds~ = ~.~ J idXi  + Z XidJi" (5) 
i i 

It has been shown by Prigogine that when the phenomenological  coefficients are constant and the reciprocity 
relation is valid, the portion of the change in rate of entropy increase due to change of thermodynamic forces is equal 
to the portion due to change of flux l i ,  

Consequently, 

dx ~ = d s ~ = d ~/2, (6) 

• Ji dXi -- ~ ,  X~ dJi 
i d'r ~ d'~ 

Throughout the region of appl icabi l i ty  of the thermodynamics of irreversible processes we have the relation 

(7) 

dxz ~ O. (8) 

In intense unsteady processes, the fluxes Ji are related with the thermodynamic forces X k through certain non- 
l inear equations, whose form, general ly speaking, is unknown. However, if  the departure from the state of equilibrium 
is not too great, we may express these nonlinear laws approximately as follows:. 
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le 

(9) 

where L! r), Lik and L'ik are constant phenomenological transfer coefficients. In steady transfer phenomena X i = Ji -= O, 
and then from (9) we obtain the usual linear equation 

k 

If the change of thermodynamic forces with t ime is small, (9) may be written as 

g* = L~)  7~ = 2 L*kgk '  (10) 
k 

where L~ r) has the dimensions of t ime and may be called a relaxation coefficient. Such a situation occurs, for example, 
in heat conduction processes, when the t ime Li (r) is comparable with the t ime taken by the unsteady heat conduction 

process (see below). 

Sometimes we must also take into account terms containing derivatives of the thermodynamic forces with respect 

to time, for example, in describing the transfer of moisture in capillary-porous substances. 

Stress relaxation in viscoelastic media.  As a first illustration, and to explain the physical meaning of the addi- 

tional terms appearing in (10), we shall examine the transfer of momentum of ordered motion in viscoelastic (non- 

Newtonian) liquids. 

A century ago, Maxwell, on the basis of the concept of relaxation, advanced the hypothesis that there is no 

difference in principle be tweenthe  mechanical  properties of viscous liquids and solid bodies. 

Relaxation is the phenomenon of gradual disappearance of elastic stresses under a constant given strain, i . e . ,  the 

gradual dissipation of elastic energy in the strained body due to its conversion into heat.  Relaxation processes are 

inseparably linked to random thermal motion of the molecules. The shear stresses Pik in a viscoelastic body relax 

(are dissipated) in a time interval rr  at some finite rate co r. 

We shall consider that dissipation of the internal stresses Pik proceeds according to the Maxwe11 law 

Pile ----- Pile (0) exp (-- ~/'r~), (11) 

where rr is the relaxation period, equal to the ratio of viscosity 7/to shear modulus G (rr = r t /G) .  Thus, in a visco- 

elastic body, the shear stresses relax at a rate inversely proportional to viscosity: 

Pik = - -  P J ' ~  = - -  GPz/'q.  (12) 

In an elastic body the shear stresses remain constant Pik = Pik(0)), or the period of relaxation r r --> ~. Therefore, if 

rr -+ ~, a liquid behaves like an amorphous solid. 

Newtonian liquids may be considered as viscoelastic bodies with relaxation period r r ~ 0, or with relaxation rate 
w r -+ ~.  Consequently, if r r --> 0, the substance behaves like an ordinary viscous liquid. For these liquids the friction 

stress is directly proportional to the viscosity coefficient and to the rate of shear strain eik (law of viscous flow). In 

fact, for p lane-para l le l  flow of an incompressible liquid the friction stress may be written as 

\0X2 (0[01 0[PJ2 " ~_ 0r~ 1 _ _  ~ 0 Q --~-~'-2 011 ) 
+ oxr) 

it being assumed that 0~1 ) )  0~oj_2 
O& Ox~ 

For intense unsteady flows a viscous liquid behaves like a viscoelastic body. Therefore Newton's law (13) of 

viscous flow becomes inapplicable.  Instead of (13) we must use (10), which, taking the flux to be Pik, elk equal to 
the thermodynamic force, Lu = ~ as the viscosity, and L1 (r) = '-- v r as the relaxation period, may be written as 

Pik = "qeik - -  "r,, Pi~ = ~' ik  - -  r~ p~ /G.  (14) 

If the relaxation period r r is small (r r = ~/G --~ 0), we obtain the law of viscous flow from (14), if ~ is large 
(77 --~ ~o) we obtain from (14yHooke's law of elasticity 

%k = - -  P t / G ,  (15) 
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whence 

Pik = Gzik = P w2 zik" 

Here w c is the rate of propagation of shear strain, or the rate of propagation of transverse waves 

Wc = ] f~ ,o .  

(16) 

(17) 

For intense unsteady flows the quantity rrPik is comparable with ~Sik, and therefore (14) must be used instead of 
(18). 

For systems of more complex structure the flow law will be given more generally by (9). For example, Oldroyd 
[4] obtained theoretically the flow equation of a viscoelastic system, consisting of an emulsion and a suspension of one 
Newtonian liquid in another, in the form 

The Oldroyd equation is identical with (9) when L = ~, L' = 71', L (r) = - r  r. Returning to (10), we note that the 

additional term Li(r)Ji describes a finite rate of propagation of the stresses imparted to a body or to a system of bodies. 

Heat transfer. Similarly, for intense unsteady transfer processes, instead of the Fourier law of heat conduction 

dq = L;qXq = - -  kvT (19) 

we must use relation (10) 

which we shall write in the form 

J q = L~ "~ ) q + LqqXr (20) 

q ). OT 
= - -  - -  % q, (21) 

On 

where k is the thermal conductivity, and L(q r) = - r r is the period of relaxation of thermal stress. 

Relation (21) was obtained in [7, 8] for the case of heat transfer and diffusion. The rate of propagation of heat is 
finite: 

Wq = Val / = rr p,r, 

where a = X/c p is the  thermal diffusivity. For nitrogen Wq = 180 m/see,  and r r = 10 -9 sec. For metals r r is smaller 

still, for example, r r = 10 - u  see for a luminum.  Therefore experimental  measurement of r r is not possible in these 
cases. However, for gases in conditions of rarefied supersonic flow, the influence of finite rate of progation of heat on 
heat transfer becomes appreciable. 

Equation (21) may be written as 

q = - - k O T  k 2 q" (2a) 
On cp Wq 

It is known that the classical theory of heat conduction assumes that the rate of propagation of heat Wq is infinitely 
large (Wq ~ ~o). Assuming Wq ~ ~o, we obtain from (23) the Fourier law of heat conduction, which will correspond to 

the case when the relaxation period of thermal stress is assumed equal to zero (r r = 0). 

At large rates of change of thermal flux q, the second term in (23) becomes comparable with the first and must 
not be neglected. 

If the thermal conductivity is large ( k - ~  ~), or the volume heat capacity is small (cp ~ 0), we obtain from (23) 

q ~- c p w~ T/w t, (24) 

where aJ t is the rate of propagation of the isotherm, proportiona'l to the diffusivity. Equation (24) is analogous in form to 

(16), which describes the state of stress in a body with a very large relaxation period O'r ~ ~). 

From (28) we can obtain the differential equation of heat transfer. In fact, e l iminat ing the flux q from the heat 
balance equation for the one-dimensional  problem 
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OT Oq 
c9 - - -  --: - -  - -  (25) 

& & 

and from (23), we obtain 

dT 82T O2T 
% - -  = a - -  (26) 

c)~ O ~2 Ox 2 

Equation (25) is of hyperbolic type and takes into account a finite rate of heat  propagation.  

At low gas pressures, when the volume heat  capaci ty  is small  (co + 0), heat  transfer proceeds by molecular  
means. In this case the molecular  mean free path is determined by the thermal  conductivi ty and the finite rate of 
heat  propagation.  Then the first term of (26) may be neglected,  and as a result we obtain the heat  transfer equation in 
the form 

O2T 2 o2T (27) 
8 ~2 = wq Ox 2 

This relat ion will  hold for gases in conditiens of supersonic flow at low density. 

It is shown in Appendix I that the heat  transfer equations are hyperbolic if  they allow for a finite rate of heat  
propagation.  This result is obtained from the kinetic  theory by solving the Boltzmann equation by Grad's method [9]. 

In conclusion, it  is interesting to draw an analogy between published results and a known case of ca lcula t ion of 

finite rate of  heat  propagation - Ze l 'dovich-Kompanee ts  temperature waves [10], where the finiteness of the rate of 

heat  propagation appears because of the dependence (stepwise) of  the thermophysical  properties of  the medium on 
temperature.  

Mass transfer in col lo idal  capi l lary-porous bodies. Moist mater ia ls  are hydrophil ic capi l lary-porous substances. 

In these substances osmot ical ly-bound moisture and absorption-bound moisture are transferred by molecular  means in 
conformity with Fick 's  law of  diffusion. As in the case of molecular  heat  transfer, it is assumed that the rate of  motion 

of mass is infini tely great.  In analy t ica l  diffusion theory this assumption does not affect the final results, since the 
relaxation period in molecular  mass transfer is approximate ly  of the same order as the reIaxation period for heat  transfer. 

However, in addition to the diffusion of moisture, in col loidal  capi l lary-porous substances there is a rather slow 

movement  of moisture under the influence of capi l la ry  forces. Usually capi l lary  motion of moisture in po lycap i l l a ry -  

porous substances is described formally by a moisture transfer law analogous to that for diffusion (capi l la ry  diffusion). It 
is assumed that the capi l la ry  potent ial  is a continuous function of the moisture content of the substance, and then the 
gradient of capi l la ry  potent ia l  will  be proportional to the moisture content gradient.  Therefore, the flux of capi l lary  

moisture Jcap will be 

Jcap = k Vq~, (28) 

where 
r 

k = "~  r2f (r) dr, (29) 
8vi 

ro 

and f(r) is the differential  curve of pore distribution along the radius r, which varies in the body from some minimum 
capi l lary  radius r0 to a maximum r for given moisture content u (maximum radius of  capi l lar ies  f i l led with liquid), 

Under isothermal conditions the gradient of capi l la ry  potent ia l  V~ is direct ly  proportional to the gradient  Vu, of  

moisture content, and then we may write 

J cap = - - / 9 c a p  PoV u, (30) 

where 

r 

COS~ o 
D c a p - - 4 " q P f ( r )  J rBf(r)dr' (81) 

Y0 

o being the surface tension and & the contact  angle of the liquid on the capi l la ry  walls.  
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Equation (30) is valid for a porous body of polycapi l lary  structure. For a monocapi l lary  body f(r)  ~ % hence 
k ~ *% and V $ --~ o o .  In this case the capi l la ry  moisture flux will  be 

J c a p = F I  p bwca p, (32) 

where Wca p is the average veloci ty  of the liquid in a body with monocapi l lary  structure. 

Equation (30) is analogous to the Fick formula for diffusion of osmotic moisture, where it is assumed that the rate 
of propagation of moisture, l ike the propagation of heat,  is infinitely great .  In fact, in col lo idal  capi l lary-porous 
bodies the veloci ty  of the moisture (liquid) is of the order 2 �9 10 -2 to 5 �9 1~ -z m/sec ,  and the moisture diffusion coef-  
ficient D m for different substances varies from 1.4 �9 10-a to 30 ' 10 -s m2/sec [11]. Therefore, the relaxat ion period 
rrm will  be of the order ( 0 . 4 - 1 . 2 )  �9 10 .4 sec, i . e . ,  approximately 105 to l0 T t imes greater than r r for heat  transfer 
in gases and metals .  

Thus, to describe moisture transfer in col loidal  capi l lary-porous bodies of polycapi l lary  structure, the general  
moisture transfer law (10) must be used, i . e . ,  

j = - -  D ~  PoV u - -  ,[~.~ 0 j / 0 z ,  ( 3 3 )  

where 

":rm = D,n/W~m. 

If the capi l la ry  walls are slightly hydrophilic,  the capi l la ry  moisture diffusion coeff icient  may be considered to 
be very large.  Then we obtain from (33) 

Ou 1 0 i / 
- -  - -  " 2 - -  " - ~ 0 .  ( 3 4 )  

- -  PO On Wrm 0 X D m 

We shall designate the l inear  rate of displacement  of the iso-concentrat ion surface (surface inside the body with 
the same re la t ive  concentration u) by COu = d n / d r ,  From (34) we obtain 

j = poW 2rm A u/w., (35) 

where AU is some given moisture content difference.  

For a porous substance of monocapi l lary  structure we may approximately take COrm = Wu, and AU will  be equal 
to the maximum moisture content u~(Au = ur then from (85) we obtain 

] = 90 Wrrn uoo, (36) 

i . e . ,  re lat ion (32), since in this case p0u~o = II0b. 

Consequently, for a monocapi l lary-porous substance, the transfer veloci ty  COrm is approximate ly  equal to the 
rate of capi l la ry  motion (COrm = COcap). 

In addition, i t  follows from the above anatysis that (33) describes moisture diffusion at a finite rate of moisture 
propagation conditioned by capi l la ry  absorption. 

From the law of  conservation of mass of moisture for the one-dimensional  problem we have 

Ou O] 
P0 0 ~ Ox (37) 

If we replace j by (33) and assume r rm = Dm/wZrm to be constant, we obtain the differential  equation of mass transfer 
in co l lo ida l  capi l lary-porous bodies*: 

an d2u O2u 
- -  + ~rm - -  = D , n  (38) 
a x O T 2 ax  2 

This equation differs from the usual moisture conduction equation in having the addit ional  term rrm OZu/Or *, which 
describes the capi l la ry  motion of moisture. 

*The case when the rate of  capi l la ry  motion corm depends on the coordinates is examined in Appendix II. 
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In the case of nonisothermal conditions, the differential  equation of moisture transfer in col lo idal  cap i l l a ry -  
porous bodies takes the form 

F" 02t t Ou__ + "v~" O "v 2 _ D~ + 6 - -  
0 T \ Ox ~ Ox 2 ] ' 

(39) 

where 6 is the thermal  gradient coefficient,  namely,  the ratio of  the moisture thermal  diffusion coeff ic ient  to the 
moisture diffusion coeff icient .  

This equation must be solved together with the heat  conduction equation for a moist body 

OT O~Y L Ou - - a  . + ( _  
O~ Ox 2 c 0 -~ 

(40) 

where L is the specific heat  of phase transition, and (~ is the phase transition parameter .  

The set of differential  equations (39) - (40)has  been soIved by A.V.  Luikov and T.L.  Pere l 'man for the boundary 

conditions 

T(x, '  O) ~-To, T(O, " : ) = r  a, (41) 

o r  (~, oo) =0 ,  u (x, O) = Uo, (42) 
Ox 

Ou (0, ~) = O, u (0, ~) = u~, (43) 

Ou( , = 0. (44) 
0x 

Analysis of  the solution obtained indicates that thermal diffusion of moisture proves to have an appreciable  in-  
fluence on capi l la ry  moisture transfer at finite rate Wrm. To illustrate this, we present the solution of the above problem 
(39)-(44) for the part icular  case of isothermal conditions of moisture transfer 5 --- 0 with no phase transitions E = 0. 

In this case the solution may be written as 

U~: -- U -- g/O -- 

//a --/20 

I 

- - ~ E ( ~ * - - [ )  1 - 1  e x p ( - - T : " z ) s i n ( / z ( 1 - - z ) U v  , 

0 
where r* = r /rrm is dimensionless t ime,  

(45) 

(46) 

and 

E (T*) I Owhen T* < 0 

I 1 when T* L> O. 
(47) 

Equation (45) describes moisture transfer with finite veloci ty  (when T* > ~). The moisture reaohes point x no 

earl ier  than t ime T 7>/g-~m/Dm x, when there is stil l  no moisture [E (7* -  ~) = 0]a tpoints  more remote  from the 

surface. The solution of  this problem with infinite moisture transfer rate (rrm = 0), is known to have the form 

u* = e r i c  (x/2 ~/DmT ). (48) 

This solution (48) differs from (45); they coincide only when r --> 0% From (45) as T* --> oo we obtain 

u* = i  "q ~ . . . .  1 x . . . .  ( 4 9 )  

which is identical to (88) when r--~ ~.  
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Thus, the general relations of thermodynamics of irreversible unsteady transfer processes may be used to describe 
diffusion-capillary moisture transfer in moist materials. 

In concluding this section, we note that estimates indicate that in a number of  cases of moisture transfer in 
complex and intertwined systems of capillaries, such as exist in a capilla;y-porous body, we must also take account of 
terms containing derivatives of the thermodynamic forces with respect to time (9). 

Turbulent heat and mass transfer processes. Transfer process of various types (heat, momentum, and mass) play 
a major role in turbulent flow. Following the general viewpoint adopted in the present paper, we give below a very 
brief resume, because of insufficient space, of  the results obtained from the theory of transfer processes in turbulent 
media, allowing for finite velocity of propagation of the respective quantities. New results from the description of 
turbulent transfer processes will be published separately. 

A distinctive feature of  transfer processes in turbulent flow is the range of scales of motion of the turbulent 
medium, responsible for mixing. The nature of turbulent transfer is determined by the distribution of energy between 
turbulent motions of different scale. The largest scale of motion, to which almost all the flow energy contributes, is 
called the scale of turbulence l. Values of the velocity of a liquid at points whose distances apart do not exceed l, 
prove to be statistically interrelated. Therefore, particles of liquid or of additive whose distance apart does not exceed 
Z, will not move independently. This upsets the analogy between turbulent and molecular transfer. 

However, as a rule, the dimensions of the regions in which the transfer processes occur are appreciably greater 
than the scale of turbulence. In such cases it is justifiable to describe turbulent transfer by analogy with molecular 
transfer, taking into account certain peculiarities, on which we dwell below. 

We shall thus examine how far to stretch the analogy between molecular transfer and transfer processes under 
conditions of small-scale turbulence [12]. 

Random molecular motion may be described by a mean molecular velocity v m and a mean molecular free path 
l m. The diffusion coefficient (or, in the case of heat transfer, the thermal conductivity) is defined in terms of these 
quantities as 

D m ~ Vmlm, (50) 

using the concept of a constant of proportionality between the flow of matter (heat) and concentratio n (temperature) 
of its gradient. 

Similarly, random turbulent motion may be described by a mean value v of the turbulent velocity fluctuations 
(fluctuations of the intensity of turbulence and of the scale of turbulence l of the type introduced in the Prandtl "mixing 
length"). We can determine the coefficient of turbulent diffusion 

D r  ~ vl ,  (51) 

which is the coefficient of proportionality between the mean turbulent flux of the quantity being transferred and its 
average concentration gradient 

J = - -  D r  pVC,, (52) 

where 

(the primes indicate deviatio n from mean values). 

If a diffusion law expressed by (30) is assumed, 

J = p c'o' (53) 

then, using the Continuity equation for the quantity being trans- 
ferred, we obtain a diffusion equation in the usual form (parabolic). There is, however, a vast difference in the scales 
of motion between molecular and turbulent processes. For example, for molecular diffusion 

V r a ~ 1 0  4 cm/sec  I m ~ 1 0  -6  , 

D m ~ "  10-1 cmZ/sec "~m~" 10--9 see. 

acceptable values of turbulent fluc.tuations are ~10% of the mean velocity and lie in the For turbulent motion, 

ranges 

v ~ l - - 1 0  ~ era/see / ~ l - - 1 0 3 e m .  

Hence 
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From the estimates given, it follows, 
processes may be neglected D T >> D M. 

D r  ~ 1-- 105 cm2/sec,  

�9 r ~ 10-a - -103  sec. 

firstly, that in the major i ty  of problems of turbulent transfer molecular  

Secondly, it appears that there is an even greater quali tat ive difference in the description of turbulent transfer 
processes, since, because of the vast difference in scales and velocit ies of motion, the parabol ic  equations commonly 
used to describe molecular  transfer processes, and introduced under the assumption that the veloci ty  of the molecules 
is infinite, become unsuitable. The appl icabi i i ty  of the parabolic  transfer equations is the more restricted, the less the 
effective velocit ies of the diffusing substance (heat). 

Thus, the parabol ic  equation of turbulent diffusion, which indicates that any disturbance is instantaneously 
apparent, if  only to a minute extent, at an arbitrari ly great distance from its source, should be replaced by a hyperbolic 
transfer equation. 

Again using the relations of thermodynamics of irreversible processes between fluxes and thermodynamic forces, 
as modified earl ier  for unsteady processes, we hay.e, for the case of isotropic turbulence, 

OzC__ __#C : DT --c32C .. (54) 
cr &c 2 -F Or @2 

If D T is variable,  the term on the right has the form --0 D r  . 

Equation (54) was introduced by Goldstein [13] (see also [14]) through an examinat ion of a known random-walk  

problem. The same general izat ion has been proposed for non-isotropic turbulence. 

In the random-walk problem Markovian stochastic processes of various orders may be examined.  

The usual diffusion equation can easily be derived from the assumption that the diffusing part icles  move randomly, 
i . e . ,  their coordinates vary with t ime according to the law of a Markovian stochastic process of  the first order. Then 
the diffusion equation is the Kolmogorov equation for this stochastic process. 

This scheme proves to be inadequate and too simple to be applied to turbulent transfer processes. The probabi l i ty  

of locating a par t ic le  of the substance being transferred under turbulent transfer conditions depends at any moment  of 
t ime r not only on its position at the immedia te ly  previous moment  of t ime,  but also on some part of the previous 
trajectory of the par t ic le .  If we restrict attention to a Markov process of second order, we obtain a transfer equation of 

hyperbolic type. 

There also exists another, simpler derivation of the hyperbolic transfer equation from the general ized Fokker- 

Planck equation in phase space [15]. 
02C 

In conclusion, we stress the following: equation (54) is hyperbolic;  this shows that the term Tr 0.c-------W~ is impor-  

tant, independently of its order, since it contains the higher derivative, and therefore determines the type of the 
equation and changes the quali tat ive nature of the solution. Let us compare the behavior of solutions of parabol ic  and 

hyperbolic transfer equations when, for example,  at t ime zero in an infinite space there is a source of the type 

c (0, = co 6 (sa) 

We have 

r  (y, '0 - 

and from (54) it follows, correspondingly, that 

Ch (g, ~) -- Co 

Co exp 
]/4r~ Dr "~ 2DT 

0 when y > ~, 

(56) 
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where 

A = _ _  ( <)I 1 exp - -  "~ l o ( Y ) +  2"r~ V ' 
4"~o 

1 V /  .~2 y~ r 2 -.-7 

and I0 (Y) and Ii (Y) are modified Bessel functions of order 0 and 1. At small  t imes the behavior of solutions (56) and 
(57) are appreciably different.  We note, for exampte,  the basic fact, which may  be seen from (56), that diffusion takes 

place according to the law ~ 1 / ~ ' ,  while from (57) r is obtained.  When r---'- .o, (56) approaches 
(57) asymptot ica l ly .  

We make several  comments on the possibility of general izing hyperbolic  transfer equations in the case of more 
than one (space) measurement.  

To derive the transfer equations with al lowance for finite veloci ty  of propagation of the transferred substance in 
the three-dimensional  case, we must examine the appreciably more complex three-dimensional  (or two-dimensional)  
Markov process. It can be shown that the transfer equation will  then be not a differential,  but an integro-different ial  
one. The integral  operator in this equation cannot always be represented in the form of derivatives with respect to 
t ime of various orders. It may be shown (we omit  this owing to insufficient space) that, for example ,  in the simplest 
case of two-dimensional  diffusion, the turbulent transfer equation may be put in the form of  a differential  equation of 
type (54) only i f  rr(x) = rr(y), which will  hold, for example,  in isotropic turbulence. 

In concluding, we note that methods of thermodynamics of  irreversible processes are valuable for investigation 
of interrelated heat  and mass transfer processes. Further development  of these methods appl icable  to intense unsteady 
transfer processes is an urgent and important  task in the over -a l l  problem of heat  and mass transfer. 

Appendix I 

It is known that the Boltzmann equation is valid for a rarefied gas in which only two-body collisions between 
molecules  are possible. In the absence of external  forces it takes the form 

of of i j~. (~) 
o7 + T Ox 

Here f (x, ~, T) is the mass density distribution function, and Jc is the coll ision integral  which depends on the 
law o f  molecular  interact ion.  

Grad has proposed the use of an expansion of  the distribution function f in Hermite polynomials,  taking as 
weighting function the equil ibrium Maxwell  function f (0) : 

1 a~) HI.) . (2) f = f(o) 
rt~O 

Substitution of this expansion in the Boltzmann equation leads to an infinite system of  differential  equations. The re-  
quired degree of approximation to the complete  solution of the Boltzmann equation is determined by the number of 
terms taken in the expansion. In order to obtain a finite system of differential  equations in closed form, al l  the Hermite 

coefficients of higher order are assumed to be zero. 

Most at tention has been given to the third approximation, when the first three terms in the expansion of the 
distribution function are examined:  

E ( 1 ~(2)~(2) 1 ~(3)u(3)) f = f(o) 1 +  - ~  "ii ",~i -F - ~  ",gk"eia �9 
i ,j ,k 

(3) 

The Hermite coefficients a (2) and 0(3) i j" ~ijk are related to the moments of the distribution function of second and 
third order 

p P ' 
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where Pij is the stress tensor. The convolute third moment Si = 2,~ Si/i' which is equal to twice the heat flux qi, 
has an important physical meaning, i 

Therefore, instead of approximation (3) we use the incomplete third approximation 

f = f ( O )  ~ (I-L- l i , j  ' -~  uii=(2)r-r(2).t,ii -}- ~ I  a / 3 ) / / / 3 ) ) '  ai = ~],k aiik' 

which may be written in the form 

/ = [(o) 1+ Pii cicj qi ci 1 
i,i 2pRT RT 5RT ' 

Ci = ~ i -  Wi" 

(4) 

( 5 )  

Thus, the components of moments p, T, w i, Pij' q l - t h e  total number is 13 -a r e  taken as parameters of  
state of the system. The stresses and the heat flux are examined along with the variables p, T, w i. 

In the system of equations of the 13 moments there appear the equations of conservation of mass, momentum and 
energy, as well as the equations for the stresses arid the heat flux: 

0 + V (6) 
OT r 

OWi ~.__jr ( O w i  t OPir ) 
at- + w, Ox, + =o, 9 Ox~ 

Ow i 
@Pt~ ~x~ @PF 

6 2 %_ , 2 Oq~)=O, 
OP~-+ E L ]  (w~P)+-3 p~' Oxr -= 3 0 x r J  OT i,r 

O ~ , Oxr) 

( awi aw i aw~ 2 •ii Prs "-~ P "-~ ~ - -  

Ox~ 3 ~ , Ox i Oxi 

2 8,iOwr)} 
- - 2  

Oqi2-- ~ { 2  (~')rqi)-~" 7 0~2.) i 2 O~-)r , 2 0~) r 
0--~- , Ox, To qr ~x~ H--5 @ Ox, -z~-5 qi ~ - t -  

0 9~ 7 ORT Pi~ OP~st 

5 3RT 2 ,~,oq~ =0, 
+ -2 p o--2/ + -2 

(8) 

(9) 

(:to) 

where 

Pii= Pzi --- PS~i. 

Here B is the collision parameter. The equations of the 13 moments are hyperbolic. The derivatives with respect 
to time appearing in them require the assignment of definite initial conditions. 

In the case of siowly varying flows the dependence on the initial values may be neglected. The time to establish 
steady (quasi-equilibrium) flow is much less than the t ime for the system to reach the equilibrium state. In cases when 
these two time scales are comparable, the flow must not be considered steady; here the derivative with respect to time 
must play an important role. 

We shall examine, as an example, the unsteady heat flux in a stationary gas (w = 0), when Pij and qi depend 
only on time. We arrive at the following system of equations 

199 



a plo ~c = O, 

E OPMOx, = o, 
r 

Op/O "~ = O, 

Opii/O ": @ ~3i? pq = O, 

Oqi I 7 ORT I 5 ORT 
"~'-TAUE ~,~Pir OX----'-/-[-~---~P OX----~ y 

2 
+ - 7  ~',, q~ = o. 

;_4 

( ] ] )  

02) 

(is) 

(14) 

(I5) 

It follows that the pressure p is constant; the stresses Pij are damped exponentially 

Pii (z) = Pii (0) exp ( ~  ~pZ). (L6) 

From the latter equation we obtain for the heat flux 

aqt.+ Z {7 5 }ORT 2 
(17) 

This may also be written in the form 
1 0gi 

q~ + 
(2/3) ~O a -~ 

(18) 

15 pR 
which coincides with (21). The quantity ), - -  is the thermal conductivity, which customarily appears in the 

4 [~O 1 
system of equations for a continuous medium. The value has the significance of a relaxation time. 

(2/3) ~P 
Appendix II 

For a number of capillary-porous bodies the rate of capillary motion of moisture ~Ocap, as the work of S. Taneeva 
has shown, is inversely proportional to the path x, ~Oca p = ao/X, where a0 is some constant value depending on the 
porosity of the body, its capillary properties, and the viscosity of the liquid. Assuming in the first approximation that 
Wcap = ~rm' we obtain for the moisture flux the following relation 

j ' OU Dm X= Oj (19) 
: - -  Dm P0 ~xx a~ 0r  

Using the moisture balance equation 

au aj (20) 

we obtain the differential equation of moisture transfer under isothermal conditions for a flux density of  the following 
form 

ai o .  x, a,G = Drn a~j 
+ -a-A" 

(21) 

We shall examine the boundary problem for a semi-infinite body, when a constant moisture flux J0 crosses the 
exposed surface: 

](0, ~) = 1o, j (oo, x) =0; (22) 

j (x, o) =0,  ai (o, x) =0.  (2~) 
or 

We shall seek a solution in the form 

200 



j (x, 9 =/of@, (~4) 

where 

=2ao  "~ /x 2. 

In this case we obtain the differential  equation 

with the conditions 

ao ] [ , (~ )=o  
2Din ? 

f(~)=1, f(o)=o, f'(o)=o. 

The solution of (26) with ini t ia l  conditions (27) may be written as 

(26) 

(26) 

(27) 

f ( [ ) - = O  when 0 - -_ / .~<1 ,  

1 / ~  F(.4-3/4)~(,---I) "-'/4 
f(~) ---- r (~ .  q- 1/4) (rl +1).+374 d'q, 

1 

where a = a0/4D m - the integral  appearing in (28) - may be expressed in terms of hypergeometr ic  functions. The cases 
a >> 3/4 and a << 3/4 may easi ly be investigated, and, for exampie,  in the part icular  case a = 3 /4  we obtain 

0 when x ~ > 2 a o ' r  

j (x, " O = j o  l _ x  l/~/(x2 + 2ao ~) when x2 <2ao "~" 
(29) 

Appendix III 

The solution of the system of  differential  equations (39)-(40) with boundary conditions (41)-(44) in the absence 

of phase transitions ( ~  = 0 )  has the form 

U :;: - -  U - -  U 0 

U a - - / ' /0  

• (~*-- ~)])] 

=E(T*--~) {[ 1 - -  Lup----~-nl- Lu (1--exp [--(1--Lu)X 

exp -- ~ +-~- ~ 1 - - - - -  (1--exp[--  
I-- Lu 

q- Lu Pn f exp [-- (1-- Lu)(~* - -  v)] erfc (1/2 r/v) dr, 

dv } § 

(3o) 

where 

[ 0 when "d ~ < 0 E 
1 when ":* > 0 ,  

and I i (v)  is a modif ied Bessel function of first order. The last term of (30)  differs from zero when r* > 0 and describes 
the thermal  diffusion transfer of  moisture.  If moisture transfer occurs at constant temperature,  the Pn number is zero 

(Pn = 0). Then from the solution of (30) we obtain 

[ i 
u*=E(f~ ' - -~)  exp -- 2" q- 2- ~ ; exp (_ ,_., ) ,i (al) 
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This solution (31) may be written in another form 

1 

0 

exp ( - - z ' z ) s i n  (1 / - z ( l ' z )  ~ ) ~ -  , (a2) 

which was given above (see Eq. (45)). 

Notation 

a- thermal  diffusivity (a = k/c0); b-capil lary fill factor; c-specif ic  heat; C-concentration; Dcap-capillary 
diffusion coefficient; Dm--moisture diffusion coefficient or mass diffusion coefficient in a moving mixture of gases; 
D T-coeff icient  of turbulent diffusion; e-phase transition parameter; G--shear modulus; I-specific heat and mass flux; 
k-coefficient of capillary conduction; n-direction of normal to isothermal surface; hi-concentration of i-th com- 
ponent in the mixture; p-pressure or friction stress; p = @ / d r - r a t e  of change of friction stress with time; q-specific 
heat flux; q = dp /dr - ra te  of change of specific heat flux with time; L-specific heat of phase transition; S-entropy; 
T-temperature; Vm-velocity of molecules; u-internal energy or relative moisture concentration in the porous body 
(moisture content); ~o-velocity of liquid (gas), or rate of propagation of stress, heat and mass; Xl-thermodynamie 
motive forces; s -shear  strain; s = d e/d~--shear strain rate; H-viscosity; &-contact  angle; X-thermal conductivity; 
g i -chemical  potential of i-th component of mixture; II-porosity; p-density; P0-density of absolutely dry substance; 
o-entropy increase or surface tension; rrm-period of propagation of moisture in capillary-porous system; C-capillary 
potential; Lu-inertia number of moisture content field relative to temperature field in a porous body (Lu = Dm/a = 
= D m op0/X); Pn-Posnov number (Pn -- 6(u a - u0)/(T a - To)). Subscripts: q- thermal  state; c -e las t ic  state; m -  
characteristic of mass or molecular characteristics; r-relaxation characteristics; T-turbulent properties; t-isothermal 
state. 
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